笔锋教育

毕业论文代写:PLC在恒压供水系统中的应用设计

来源:毕业论文代写作者:论文代写网址:http://www.ibefront.com浏览数:18765 

PLC在恒压供水系统中的应用设计

摘 要


本论文根据中国城市小区的供水要求,设计了一套基于PLC的变频调速恒压供水系统, 并利用组态软件开发良好的运行管理界面。变频恒压供水系统由可编程控制器、变频器、水泵机组、压力传感器、工控机等构成。

本系统包含三台水泵电机,它们组成变频循环运行方式。采用变频器实现对三相水泵电机的软启动和变频调速,运行切换采用“先启先停”的原则。压力传感器检测当前水压信号,送入PLC与设定值比较后进行PID运算,从而控制变频器的输出电压和频率,进而改变水泵电机的转速来改变供水量,最终保持管网压力稳定在设定值附近。通过工控机与PLC的连接,采用组态软件完成系统监控,实现了运行状态动态显示及数据、报警的查询。


关键词:变频调速,恒压供水,PLC,组态软件

目 录

摘 要1

目 录1

第一章 引言1

第二章 PLC在恒压供水系统设计方案2

2.1变频恒压供水系统概述2

2.1 执行机构2

2.2 信号检测机构3

2.3控制机构3

第三章 PLC在恒压供水系统的设计5

3.1 系统主要设备的选型5

3.2 系统主电路分析及其设计7

3.3 系统控制电路分析及其设计9

第四章 结束语11

参考文献12

致 谢13

第一章 引言


目前的供水方式朝向高效节能、自动可靠的方向发展,变频调速技术以其显着的节能效果和稳定可靠的控制方式,在风机、水泵、空气压缩机、制冷压缩机等高能耗设备上广泛应用,特别是在城乡工业用水的各级加压系统,居民生活用水的恒压供水系统中,变频调速水泵节能效果尤为突出,其优越性表现在:一是节能显著;二是在开、停机时能减小电流对电网的冲击以及供水水压对管网系统的冲击;三是能减小水泵、电机自身的机械冲击损耗[2]。

基于PLC和变频技术的恒压供水系统集变频技术、电气技术、现代控制技术于一体。采用该系统进行供水可以提高供水系统的稳定性和可靠性,同时系统具有良好的节能性,这在能源日益紧缺的今天尤为重要,所以研究设计该系统,对于提高企业效率以及人民的生活水平、降低能耗等方面具有重要的现实意义。

本设计是以小区供水系统为控制对象,采用PLC和变频技术相结合技术,设计一套城市小区恒压供水系统,并引用计算机对供水系统进行远程监控和管理保证整个系统运行可靠,安全节能,获得最佳的运行工况。

PLC控制变频恒压供水系统主要有变频器、可编程控制器、压力变送器和现场的水泵机组一起组成一个完整的闭环调节系统,本设计中有3个贮水池,3台水泵,采用部分流量调节方法,即3台水泵中只有1台水泵在变频器控制下作变速运行,其余水泵做恒速运行。PLC根据管网压力自动控制各个水泵之间切换,并根据压力检测值和给定值之间偏差进行PID运算,输出给变频器控制其输出频率,调节流量,使供水管网压力恒定。各水泵切换遵循先起先停、先停先起原则。

第二章 PLC在恒压供水系统设计方案

2.1变频恒压供水系统概述

PLC控制变频恒压供水系统主要有变频器、可编程控制器、压力变送器和现场的水泵机组一起组成一个完整的闭环调节系统,该系统的控制流程图如图2-1所示:

图2-1 变频恒压供水系统控制流程图

从图中可看出,系统可分为:执行机构、信号检测机构、控制机构三大部分,具体为:

2.1 执行机构

执行机构是由一组水泵组成,它们用于将水供入用户管网,其中由一台变频泵和两台工频泵构成,变频泵是由变频调速器控制、可以进行变频调整的水泵,用以根据用水量的变化改变电机的转速,以维持管网的水压恒定;工频泵只运行于启、停两种工作状态,用以在用水量很大(变频泵达到工频运行状态都无法满足用水要求时)的情况下投入工作。

2.2 信号检测机构

在系统控制过程中,需要检测的信号包括管网水压信号、水池水位信号和报警信号。管网水压信号反映的是用户管网的水压值,它是恒压供水控制的主要反馈信号。此信号是模拟信号,读入PLC时,需进行A/D转换。另外为加强系统的可靠性,还需对供水的上限压力和下限压力用电接点压力表进行检测,检测结果可以送给PLC,作为数字量输入;水池水位信号反映水泵的进水水源是否充足。信号有效时,控制系统要对系统实施保护控制,以防止水泵空抽而损坏电机和水泵。此信号来自安装于水池中的液位传感器;报警信号反映系统是否正常运行,水泵电机是否过载、变频器是否有异常,该信号为开关量信号。

2.3控制机构

供水控制系统一般安装在供水控制柜中,包括供水控制器(PLC系统)、变频器和电控设备三个部分。供水控制器是整个变频恒压供水控制系统的核心。供水控制器直接对系统中的压力、液位、报警信号进行采集,对来自人机接口和通讯接口的数据信息进行分析、实施控制算法,得出对执行机构的控制方案,通过变频调速器和接触器对执行机构(即水泵机组)进行控制;变频器是对水泵进行转速控制的单元,其跟踪供水控制器送来的控制信号改变调速泵的运行频率,完成对调速泵的转速控制。

变频恒压供水系统以供水出口管网水压为控制目标,在控制上实现出口总管网的实际供水压力跟随设定的供水压力。设定的供水压力可以是一个常数,也可以是一个时间分段函数,在每一个时段内是一个常数。所以,在某个特定时段内,恒压控制的目标就是使出口总管网的实际供水压力维持在设定的供水压力上[10]。变频恒压供水系统的结构框图如图2-2所示:

图2-2 变频恒压供水系统框图

恒压供水系统通过安装在用户供水管道上的压力变送器实时地测量参考点的水压,检测管网出水压力,并将其转换为4—20mA的电信号,此检测信号是实现恒压供水的关键参数。由于电信号为模拟量,故必须通过PLC的A/D转换模块才能读入并与设定值进行比较,将比较后的偏差值进行PID运算,再将运算后的数字信号通过D/A转换模块转换成模拟信号作为变频器的输入信号,控制变频器的输出频率,从而控制电动机的转速,进而控制水泵的供水流量,最终使用户供水管道上的压力恒定,实现变频恒压供水。

第三章 PLC在恒压供水系统的设计

3.1 系统主要设备的选型


根据基于PLC的变频恒压供水系统的原理,系统的电气控制总框图如图3-1所示:

图3-1 系统的电气控制总框图

由以上系统电气总框图可以看出,该系统的主要硬件设备应包括以下几部分:(1) PLC及其扩展模块、(2) 变频器、(3) 水泵机组、(4) 压力变送器、(5) 液位变送器。主要设备选型如表3-1所示:

表3-1 本系统主要硬件设备清单

主要设备型号及其生产厂家

可编程控制器(PLC)Siemens CPU 226

模拟量扩展模块Siemens EM 235

变频器Siemens MM440

水泵机组SFL系列水泵3台(上海熊猫机械有限公司)

压力变送器及显示仪表普通压力表Y-100、XMT-1270数显仪

液位变送器分体式液位变送器DS26(淄博丹佛斯公司)

3.1.1 PLC及其扩展模块的选型

PLC是整个变频恒压供水控制系统的核心,它要完成对系统中所有输入号的采集、所有输出单元的控制、恒压的实现以及对外的数据交换。因此我们在选择PLC时,要考虑PLC的指令执行速度、指令丰富程度、内存空间、通讯接口及协议、带扩展模块的能力和编程软件的方便与否等多方面因素。由于恒压供水自动控制系统控制设备相对较少,因此PLC选用德国SIEMENS公司的S7-200型。S7-200型PLC的结构紧凑,价格低廉,具有较高的性价比,广泛适用于一些小型控制系统。SIEMENS公司的PLC具有可靠性高,可扩展性好,又有较丰富的通信指令,且通信协议简单等优点;PLC可以上接工控计算机,对自动控制系统进行监测控制。PLC和上位机的通信采用PC/PPI电缆,支持点对点接口(PPI)协议,PC/PPI电缆可以方便实现PLC的通信接口RS485到PC机的通信接口RS232的转换,用户程序有三级口令保护,可以对程序实施安全保护[12]。

3.1.2 变频器的选型

由于本设计中PLC选择的西门子S7-200型号,为了方便PLC和变频器之间的通信,我们选择西门子的MicroMaster440变频器。它是用于三相交流电动机调速的系列产品,由微处理器控制,采用绝缘栅双极型晶体管作为功率输出器件,具有很高的运行可靠性和很强的功能。它采用模块化结构,组态灵活,有多种完善的变频器和电动机保护功能,有内置的RS-485/232C接口和用于简单过程控制的PI闭环控制器,可以根据用户的特殊需要对I/O端子进行功能自定义。快速电流限制实现了无跳闸运行,磁通电流控制改善了动态响应特性,低频时也可以输出大力矩。MicroMaster440变频器的输出功率为0.75~90KW,适用于要求高、功率大的场合,恰好其输出信号能作为75KW的水泵电机的输入信号。另外选择西门子的变频器可以通过RS-485通信协议和接口直接与西门子PLC相连,更便于设备之间的通信。

3.1.3 水泵机组的选型

水泵机组的选型基本原则,一是要确保平稳运行;二是要经常处于高效区运行,以求取得较好的节能效果。要使泵组常处于高效区运行,则所选用的泵型必须与系统用水量的变化幅度相匹配。本设计的要求为:电动机额定功率75KW,供水压力控制在0.3±0.01Mpa。根据本设计要求并结合实际中小区生活用水情况,最终确定确定采用3台上海熊猫机械有限公司生产的SFL系列水泵机组(电机功率75KW)。SFL型低噪音生活给水泵在外壳、轴上采用不锈钢材质,叶轮、导叶采用铸造件,经过静电喷塑处理,效率可提高5%以上;采用低噪音电机,机械密封,前端配有泄压保护装置,噪声更低(室外噪音60分贝)、磨损小、寿命更长;下轴承采用柔性耐磨轴承,噪音低,寿命长;采用低进低出的结构设计,水力模型先进,性能更可靠。它可以输送清水及理化性质类似于水的无颗粒、无杂质不挥发、弱腐蚀介质,一般用在城市给排水、锅炉给水、空调冷却系统、消防给水等。因此本设计中选择电机功率为75KW的上海熊猫机械有限公司生产的SFL系列水泵3台。

3.2 系统主电路分析及其设计

基于PLC的变频恒压供水系统主电路图如图3.2所示:三台电机分别为M1、M2、M3,它们分别带动水泵1#、2#、3#。接触器KM1、KM3、KM5分别控制M1、M2、M3的工频运行;接触器KM2、KM4、KM6分别控制M1、M2、M3的变频运行;FR1、FR2、FR3分别为三台水泵电机过载保护用的热继电器;QS1、QS2、QS3、QS4分别为变频器和三台水泵电机主电路的隔离开关;FU为主电路的熔断器。

本系统采用三泵循环变频运行方式,即3台水泵中只有1台水泵在变频器控制下作变速运行,其余水泵在工频下做恒速运行,在用水量小的情况下,如果变频泵连续运行时间超过3h,则要切换下一台水泵,即系统具有“倒泵功能”,避免某一台水泵工作时间过长。因此在同一时间内只能有一台水泵工作在变频下,但不同时间段内三台水泵都可轮流做变频泵。

图3-2 变频恒压供水系统主电路图

三相电源经低压熔断器、隔离开关接至变频器的R、S、T端,变频器的输出端U、V、W通过接触器的触点接至电机。当电机工频运行时,连接至变频器的隔离开关及变频器输出端的接触器断开,接通工频运行的接触器和隔离开关。主电路中的低压熔断器除接通电源外,同时实现短路保护,每台电动机的过载保护由相应的热继电器FR实现。变频和工频两个回路不允许同时接通。而且变频器的输出端绝对不允许直接接电源,故必须经过接触器的触点,当电动机接通工频回路时,变频回路接触器的触点必须先行断开。同样从工频转为变频时,也必须先将工频接触器断开,才允许接通变频器输出端接触器,所以KM1和KM2、KM3和KM4、KM5和KM6绝对不能同时动作,相互之间必须设计可靠的互锁。为监控电机负载运行情况,主回路的电流大小可以通过电流互感器和变送器将4~20mA电流信号送至上位机来显示。同时可以通过转换开关接电压表显示线电压。并通过转换开关利用同一个电压表显示不同相之间的线电压。初始运行时,必须观察电动机的转向,使之符合要求。如果转向相反,则可以改变电源的相序来获得正确的转向。系统启动、运行和停止的操作不能直接断开主电路(如直接使熔断器或隔离开关断开),而必须通过变频器实现软启动和软停。为提高变频器的功率因数,必须接电抗器。当采用手动控制时,必须采用自耦变压器降压启动或软启动的方式以降低电流,本系统采用软启动器。

3.3 系统控制电路分析及其设计


系统实现恒压供水的主体控制设备是PLC,控制电路的合理性,程序的可靠性直接关系到整个系统的运行性能。本系统采用西门子公司S7-200系列PLC,它体积小,执行速度快,抗干扰能力强,性能优越。

PLC主要是用于实现变频恒压供水系统的自动控制,要完成以下功能:自动控制三台水泵的投入运行;能在三台水泵之间实现变频泵的切换;三台水泵在启动时要有软启动功能;对水泵的操作要有手动/自动控制功能,手动只在应急或检修时临时使用;系统要有完善的报警功能并能显示运行状况。

如图3-3为电控系统控制电路图。图中SA为手动/自动转换开关,SA打在1的位置为手动控制状态;打在2的状态为自动控制状态。手动运行时,可用按钮SB1~SB6控制三台水泵的启/停;自动运行时,系统在PLC程序控制下运行。

图3-3 变频恒压供水系统控制电路图

注:PLC各I/O端口、各指示灯所代表含义在下一节I/O端口分配中将详细介绍。

第四章 结束语

本文针对城市小区供水的特点,设计开发了一套基于PLC的变频恒压供水自动控制系统。该系统利用单台变频器实现多台水泵电机的软起动和调速,摒弃了原有的自耦降压起动装置,同时把水泵电机控制纳入自动控制系统。压力变送器采样管网压力信号经PID处理传送给变频器,变频器根据压力大小调节电机转速,通过改变水泵性能曲线来实现水泵的流量调节,保证管网压力恒定。该系统不仅有效地保证了供水系统管网压力恒定,而且具有工作可靠、施工简单、节能效果显著、全自动控制、无二次污染等优点。

参考文献



[1] 崔金贵.变频调速恒压供水在建筑给水应用的理论探讨[J].兰州铁道学院学报,2000,1:84-88

[2] 张燕宾.变频调速应用实践[M].北京:机械工业出版社,2002,135-137

[3] 金传伟,毛宗源.变频调速技术在水泵控制系统中的应用[J],电子技术应用,2000,2:38-39

[4] 张燕宾.SPWM变频调速应用技术[M].北京:机械工业出版社,2002,244-251

[5] 胡崇岳.现代交流调速技术[M].北京:机械工业出版社,1998,316-317

[6] 马桂梅,谭光仪,陈次昌.泵变频调速时的节能方案讨论[J],四川工业学院学报,2003,3:5-7

[7] 林俊赞,李雄松,尹元日.PLC在恒压供水控制系统中的应用[J],电机电器技术,1999,3:45-48

[8] 吴浩烈.电机及电力拖动基础[M].重庆:重庆大学出版社,1996, 173-174

[9] 杨东平.变频调速恒压供水系统综述[J],南宁职业技术学院学报,2004,4:38-45

[10] 耿红旗,吕冬艳.可编程序控制器应用教程[M].北京:中国水利水电出版社,2001,45-60

[11] 郑兆生,张伟,郑新志.PLC及变频器恒压供水控制系统设计[J],山东轻工业学院学报,2007,3:123-138

[12] 邵裕森,戴先中.过程控制工程[M].北京:机械工业出版社,2007,166-169